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Mechanistische Untersuchungen des
Kettenwachstums von Polyethylen in Gegenwart
von Wasser**

Andreas Berkefeld und Stefan Mecking*

Die Emulsionspolymerisation unges�ttigter Monomere z�hlt
zu den bedeutendsten und auch vielseitigsten Polymerisati-
onsverfahren. Auf diese Weise werden Polymerlatices erhal-
ten, d.h. w�ssrige Dispersionen von durch Tenside stabili-
sierten Polymer-Mikropartikeln mit Gr$ßen von 50 bis
1000 nm. Zahlreiche Anwendungen von Polymerlatices (z. B.
in Beschichtungen aller Art) beruhen auf der Filmbildung
beim Verdampfen des Dispersionsmediums. Die /bergangs-
metall-katalysierte Insertionspolymerisation erweitert die
industrielle Synthese von Polymerlatices durch radikalische
Emulsionspolymerisation[1] im Hinblick auf die zug�nglichen
Polymere und erm$glicht eine wesentlich umfassendere
Kontrolle der Polymermikrostruktur.[2–5,8] K9rzlich wurde die
Herstellung von Latices außergew$hnlich kleiner Polyethy-
lenpartikel beschrieben.[2g–i]

Im Hinblick auf die Reaktivit�t der katalytisch aktiven
Spezies gegen9ber dem Reaktionsmedium m9ssen einige
grundlegende Aspekte der Insertionspolymerisation in
w�ssriger Emulsion gekl�rt werden: 1) die Konkurrenz zwi-
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schen Monomer und Wasser um freie Koordinationsstellen
am Metallzentrum (d.h. die reversible Blockierung von ak-
tiven Zentren), 2) das Kettenwachstum in Wasser und 3) die
Reaktivit�t der im Verlauf der Polymerisation gebildeten
h$heren Metall-Alkyl-Spezies M-R (R>Methyl) gegen9ber
Wasser. Aktuelle theoretische Betrachtungen an neutralen
Nickelsalicylaldiminato- und kationischen Palladium- oder
Nickel-Diimin-Chelatkomplexen lassen darauf schließen,
dass die Koordination von Ethylen an den Katalysator ge-
gen9ber der von Wasser bevorzugt ist.[6]

Als Modellsystem zur Untersuchung dieser Punkte wurde
ein von Brookhart et al. f9r die Olefinpolymerisation unter-
suchter kationischer Palladium-Diimin-Chelatkomplex ver-
wendet, dessen polymerisationsaktive Palladiumalkyl-Olefin-
Spezies mittels NMR-Spektroskopie bei tiefen Temperaturen
direkt beobachtbar sind.[7,9, 10] F9r quantitative Untersuchun-
gen in homogener L$sung wurden w�ssrige L$sungen von
deuteriertem Tetrahydrofuran (einem L$sungsmittel mit
niedrigem Schmelzpunkt und guter Mischbarkeit mit Wasser
bei tiefen Temperaturen) verwendet.

Die Zugabe von Wasser zum Diethylether-Addukt[7]

[(N
_
N)PdMe(OEt2)] [BAr4

F] (1-OEt2; N
_
N=ArNC(Me)(Me)-

CNAr mit Ar= 2,6-iPr2C6H3, BAr4
F =B(3,5-(CF3)2C6H3)4) in

[D8]THF bei �60 8C f9hrt zur Bildung des entsprechenden
Wasserkomplexes 1-OH2. Die relative Bindungskonstante
von Wasser bez9glich [D8]THF wurde zu K= 4 I 104 abge-
sch�tzt (THF vs. Diethylether: K= 4). Spezifische 1H-NMR-
Signale (12 Jquiv. Wasser,[13] �60 8C): d= 6.32 (br. s, Pd-
(CH3)(OH2)), 2.31 und 2.27 (s, (H3C)CN, N

_
N), 0.34 ppm (s,

Pd(CH3)(OH2); vollst�ndige NMR-Daten siehe Hinter-
grundinformationen).[11]

Freies, 9bersch9ssiges Wasser zeigt eine chemische Ver-
schiebung von d= 3.30 ppm. Da das Signal koordinierten
Wassers zwar keine charakteristischen Kopplungen aufweist,
sich dieses aber im Austausch mit freiem Wasser befindet,
gelang die zweifelsfreie Zuordnung mithilfe eines EXCY-
NMR-Experiments (Hintergrundinformationen, Abbil-
dung S2). Die Beobachtung zweier getrennter Signale f9r
koordiniertes und freies Wasser zeigt, dass sich der Austausch
auf der Zeitskala des NMR-Experiments langsam vollzieht.
Die Koaleszenztemperatur, TC(OH2), liegt zwischen 0 und
5 8C. Dies entspricht einer Austauschgeschwindigkeitskon-
stanten kC(PdMe,OH2) erster Ordnung in der Gr$ßenord-
nung von 103 s�1.[12]

Versetzt man eine L$sung von 1-OH2 in [D8]THF bei
�60 8C mit Ethylen, so wird die teilweise Bildung des be-
kannten[7] Ethylenkomplexes 1-C2H4 (siehe Schema 1 und
Abbildung 1) beobachtet. Bei Temperaturen oberhalb von
�30 8C erfolgt die Insertion des Olefins. Somit konnte die
Insertion von Ethylen in Gegenwart von Wasser direkt
beobachtet werden, und h$here Palladiumalkyl-Wasser-
Komplexe [(N

_
N)Pd(C2n+1H4n+3)(OH2)]+ (2-OH2) ließen sich

sauber im NMR-Rohr erzeugen (Abbildung 2). Umgekehrt
f9hrt auch die Zugabe von Wasser nach Insertion einer defi-
nierten Menge Ethylen ausgehend von 1-OEt2 zu den be-
schriebenen Palladiumalkyl-Wasser-Komplexen 2-OH2. Spe-
zifische 1H-NMR-Signale (3.6 Jquiv. Wasser, �20 8C): d=

5.98 (br. s, Pd(C2n+1H4n+3)(OH2)), 2.31 und 2.25 ppm (s,
H3C)CN, N

_
N). Die Komplexe 1-OH2 und 2-OH2 sind auf-

Schema 1. Austausch koordinierten Wassers durch Ethylenmonomer
und Kettenwachstum in Gegenwart von Wasser.

Abbildung 1. Wasser- und Olefin-Spezies w2hrend des Kettenwachs-
tums (12 Equiv. Ethylen, 3.6 Equiv. Wasser, �20 8C, [D8]THF).

Abbildung 2. HAhere Palladiumalkyl-Wasser-Spezies (2-OH2) nach In-
sertion von 24 Equiv. Ethylen (3.6 Equiv. Wasser, �20 8C, [D8]THF).
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grund unterschiedlicher chemischer Verschiebungen der Sig-
nale sowohl f9r koordiniertes Wasser als auch f9r die Me-
thylprotonen des Diiminliganden eindeutig voneinander un-
terscheidbar.

Die Gleichgewichtskonstanten des Austausches koordi-
nierten Wassers gegen Ethylen (1-OH2 + C2H4 Q 1-C2H4 +

OH2, K1 und 2-OH2 + C2H4 Q 2-C2H4 + OH2, K2) wurden
f9r unterschiedliche Temperaturen direkt aus den 1H-NMR-
Spektren bestimmt (Schema 1, Tabelle 1). Bei Temperaturen

oberhalb von �30 8C l�uft zus�tzlich die Ethyleninsertion ab.
Die erhaltenen Gleichgewichtskonstanten sind unabh�ngig
von der Wasser- und Ethylenkonzentration (siehe Hinter-
grundinformationen). Werte f9r K variieren zwischen 1 und 4
9ber den untersuchten Temperaturbereich von 50 K. Er-
staunlicherweise zeigen Ethylen und Wasser relative Bin-
dungsst�rken vergleichbarer Gr$ßenordnung; Ethylen bindet
geringf9gig st�rker. Dieser Befund widerspricht den Ergeb-
nissen theoretischer Untersuchungen,[6] nach denen die
Ethylenkoordination deutlich bevorzugt sein sollte.[14] Wasser
konkurriert deutlich st�rker um die freie Koordinationsstelle
am kationischen Palladiumzentrum als andere s-Donoren,
z. B. Diethylether oder THF. Dieser Befund k$nnte zum einen
auf den geringen sterischen Anspruch des Wassermolek9ls
und zum anderen auf die Bildung von Wasserstoffbr9cken zu
freien Wasser- oder THF-Molek9len zur9ckzuf9hren sein.
Bemerkenswerterweise unterscheidet sich die relative Bin-
dungsst�rke in h$heren Alkylkomplexen (2-OH2 + C2H4 Q
2-C2H4 + OH2, K2) nicht merklich von der Bindungsst�rke
im Methylkomplex. Die Temperaturabh�ngigkeit des
Gleichgewichts ist erwartungsgem�ß gering;K verringert sich
um einen Faktor von 2 bis 3 9ber einen Temperaturbereich
von 50 K.

Es ist denkbar, dass Wasser durch Koordination als f9nf-
ter Ligand an das Metallzentrum den Insertionsschritt des
Monomers beeinflussen k$nnte. Es sei erw�hnt, dass f9nffach
koordinierte Intermediate als die Schl9sselspezies bei der
Ketten9bertragung f9r den Palladium-Diimin-Katalysator
diskutiert werden.[7, 10] Mittels NMR-Spektroskopie wurden
Geschwindigkeitskonstanten erster Ordnung der Ethylen-
insertion in die Pd-Me-Bindung sowohl in Gegenwart (3.6–
12 Jquiv.) als auch in Abwesenheit von Wasser bei unter-
schiedlichen Temperaturen bestimmt (siehe Hintergrund-
informationen). Die unter Ber9cksichtigung des Wasser-
Ethylen-Bindungsgleichgewichts erhaltenen Geschwindig-
keitskonstanten stimmen innerhalb der experimentellen

Fehlergrenzen mit denen in Abwesenheit von Wasser 9berein
(Tabelle 1). Wasser hat somit keinen Einfluss auf den Inser-
tionsschritt; ferner ist die Einstellung des Wasser-Ethylen-
Bindungsgleichgewichts schnell im Vergleich zur Insertion
und damit nicht geschwindigkeitsbestimmend. Die erhaltene
freie Reaktionsenthalpie DG�=�74 kJ mol�1 stimmt mit li-
teraturbekannten Daten 9berein (73 kJ mol�1 in CD2Cl2).[7]

Die Alkylkomplexe [(N
_

N)Pd(C2n+1H4n+3)(OH2)]+ (2-OH2)
sind bei tiefen Temperaturen (< 0 8C; Abbildung 2) stabil. Bei
Raumtemperatur wird Zersetzung unter Bildung eines
schwarzen Feststoffes, vermutlich Pd-Schwarz, beobachtet.
Erstaunlicherweise wird die Zersetzung bei gleichzeitiger
Gegenwart von Wasser und Ethylen selbst bei tiefen Tem-
peraturen beschleunigt. b-Hydrideliminierung als denkbare
Nebenreaktion erscheint unwahrscheinlich, da keine Signale
f9r freie Olefine beobachtet wurden. M$gliche Erkl�rungen
sind 1) die Hydrolyse h$herer (sekund�rer) Alkylspezies,
2) reduktive Kupplung des Alkylfragments an den Liganden
oder 3) eine intermolekulare reduktive Alkylkupplung.[15]

Der Methylkomplex 1-OH2 zeigt hingegen auch nach Tagen
in w�ssrigem [D8]THF (10 Jquiv. Wasser im /berschuss) bei
Raumtemperatur keine Zersetzung, z. B. in Form einer Hy-
drolyse der Pd-Me-Bindung.

Wir haben hier die erste direkte Beobachtung des Poly-
ethylenkettenwachstums in der Gegenwart von Wasser be-
schrieben. H$here Alkyl-Spezies [(N

_
N)PdR(OH2)]+ (R>Me)

wurden sauber erzeugt. Erstaunlicherweise konkurriert
Wasser in dem hier untersuchten Modellsystem mit Ethylen
um die freie Koordinationsstelle. Dies gilt sowohl f9r den
Methylkomplex als auch f9r die h$heren Alkylkomplexe,
welche die reaktiven Spezies w�hrend des Kettenwachstums
sind. Die Geschwindigkeitskonstante der Insertion von
Ethylen in die Pd-Me-Bindung wird durch das Vorhandensein
von Wasser nicht beeinflusst.

Experimentelle Daten befinden sich in den Hinter-
grundinformationen: experimentelle Methoden, Ergebnisse
und vollst�ndige Auswertung.
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